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ABSTRACT

The paper discusses the higher-order approximations in the theory of strong
interaction between a boundary layer and an external inviscid flow. Known
results concerning the problem of the unsteady motion of a gas past an
infinite plate, and the problem of the steady flow past a semi-infinite plate
are refined. The analysis leads to asymptotic expressions for the transverse
displacements of a plate, or its shape, that correspond to the pressure-
distribution law of the first approximation.

INTRODUCTION

The effect of the viscosity and heat conductivity of a gas upon the flow
field near a body moving at hypersonic speed is known to lend itself to an
approximate anaiysis on the basis of the theory of boundary-layer inter-
action with the external viscous region of the flow.! If the body is suffi-
ciently slender, and the Mach number and Reynolds number of the
problem are such that the ratio M?/+/Re_ >> 1, then a strong interaction
takes place, in which the pressure field in the perturbed region of the flow
is primarily influenced by the displacing effect of the boundary layer, and
to a much lesser degree by the shape of the surface of the body that is
situated in the flow. The most typical examples of a plane flow of this type,
namely, the unsteady flow past an infinite plane that has been abruptly
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set in motion at constant speed, and the steady flow past a semi-infinite
plate, have been discussed in Refs. 2 and 3.

The solutions obtained in these papers are based on combining the exact
(self-similar) solutions of the boundary-layer equations with the solutions
of the equations in the small-perturbation theory of hypersonic flow; the
procedure of combining these solutions having been developed only in the
first approximation. The result of this is the peculiar behavior of the
solutions in the intermediate region (at the external boundary of the
boundary layer), which manifests itself in that the enthalpy of the gas in
this region tends to zero, while the density undergoes an infinite increase.

References 2 and 3 include also accuracy estimates of the first-approxi-
mation theory.

The object of the present work is to develop the higher-order approxi-
mations to these problems, or more precisely, to problems associated with
the asymptotic behavior of the flow field of a viscous heat-conducting gas
behind shock waves the propagation of which is controlled by the same
law (y ~ % and y ~ 2%, in the limiting case where M — .

NONSTEADY MOTION

Let us examine the one-dimensional nonsteady motion of a viscous
heat-conducting gas, caused by an infinite plate that has been set in
motion at a velocity that has a constant longitudinal component V_. We
assume a linear dependence of the viscosity coefficient of the gas upon the
specific enthalpy:

u=CV2h 1)

In this case, the Navier-Stokes equations may be written in the form
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where the velocity-vector components u, » refer to the longitudinal velocity
of the plate, the pressure p refers to the quantity o, V, the density p refers
to the density of the unperturbed flow p_, the specific enthalpy & refers to
the quantity V?2; the dimensionless independent variables ¢, y refer to the
quantities ¢/p, and cV_/p,, respectively; ¢ and v are respectively the
Prandtl number and the ratio of specific heats of the gas.

Introducing, on the basis of the continuity equation, the function y,
defined by the relations

(2 W .
¢ Ay 3)

we write the system (2) in terms of the independent variables ¢, y. As a
result we get

at oy av Moy @
224 led) (Y ()
Pat = 9 +6 ag \Phay) Teh\Gy) T3\ 5y
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As already stated, our object is to obtain an asymptotic solution of these
equations that corresponds to the one-dimensional motion of a gas propa-
gating according to the law

y =t ()
that satisfies the condition of attachment
u =1 (6)
and the condition of the absence of a heat flux

dh
Ev) =0 (7)

on the plate surface ¢ = 0, which is thus postulated as a heat insulated
surface.
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For the external portion of the flow field, adjoining to the surface of the
shock wave, such a solution is known to have the form

y =" 50)
u=20
_ 4—1/4
v =t " Vo) ®)
P = t_llz Po(l/)
p = Rov)
h = t—l/2 Ho(ll),
where the independent variable
—et )

Substituting the expression (8) into the initial system of equations (4), and
retaining the principal terms in these equations, we obtain a system of
ordinary differential equations for the well-known progressive motion of
an inviscid gas:

3 1

ZVV‘,’ +4Vo=P6

R&}H&+Ho=gma+m
RoYs =1 (10)

%ﬂ(—erFh=0

Po = Y=L po,
Y

We should note that taking a gas in the external region of the flow to be
inviscid and nonconducting involves a relative error on the order of (1
since this is the order of smallness of the relation of the terms neglected in
equations (4) to the principal terms.

The solution of the system of equations (10) must satisfy the set of
boundary conditions at the surface of the shock wave, the propagation of
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which follows the equation (5). In the limiting case of a flow at M _ — oo,
these boundary conditions take the form:

Yo(C) =C
3
VO =56+
9c?
PO = & ‘“)
Ro(c) = %‘i__}
-V
Ho©) = 5+ 1y

where the constant ¢ has to be determined.

For the following, it will be essential to have the expressions for the
sought functions of the external flow at » — 0. To obtain these equations
it is necessary to note that the second of the equations (9) is integrable
with the aid of the last equation, giving:

i)

S 12)
E;

where the constant of integration A, is determined from the boundary

conditions (11):
(11
= 13
d=ga+n\WF1 (15}

Making use of Eq. (12) and the remaining equations of the system (10), it is
now easy to obtain the following expressions, valid for v — 0:

Il

Yy Yoo + Yo yI @3 + 0(,,2—(2/31))
Ve = Voo + Varrl 2% L 0G* ")

Py = Po + O(v) (14)

B = B 23 + O(yw(z,;m)

HO s HOO ”—2/37 + O(Vl—(z/«?‘y))
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The coefficients in these formulas are related by the following relations:

3 _ 3
Yo = g‘_y_—2 Aol/7 Py 1/7; Voo = 4 Yoo
3 _ _
Vo =55y —gy 4" P, R = 407 Pu'” (1)
HOO _ L‘Aollypoo 1—(1/7)
vy—1

To investigate the internal region of the flow field we, as usual, introduce
the independent variable

N =y (16)
To determine the form of the asymptotic expansion in this region, we ex-
press the external flow function through the independent variable of the
external expansion

vy = N2 (17)

and consider the limit ¢ — oo at fixed values of N. Using the expressions
(14), we get:

y = t3/4 [Yoo + YOl Nl—(2/3‘y) t—(1/2)+(1/3‘7) + O(t—1+(1/3’v) )]

o

S
I

v =" (Voo + Vou NGB =+ + O(t_1+(1/37))]
(18)

p = t_lﬂ [POO + O(t_l/2)]

p = ROO N2/37 t—l/S‘Y + O(t—(l/2)—(1/37))

h = Hy N2y il + O(t—H—(l/sy))

These expressions predict the form in which to seek the asymptotic solu-
tion for the internal region of the flow, namely:

y = l3/4 [?IO(N) + t—(1/2)+(1/3‘y) yl(N) + L ]

w = up (N) + CDHABY 0 (Y 4+
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_ 14 —(1/2)4(1/37)
v =t " [vo (N) + ¢ v(N) + ... ] (19)
p = t—1/2 [pO (N) + t—(1/2)+(1/37) pl(N) + . ]

2 [pg (N) + /DD 5 (N) + ... ]

p

ho (N) + /2B b (N) + . ..

Indeed, the combination of the internal and external expansions can be
now performed if, in conformity with the simplest form of the combination
principle, the following boundary conditions for the external expansion
functions are satisfied:

UO(N) — Yoo
uy(N) — O
po(N) — Poo
ho(N) — O

h

at N — o (20)

in the first approximation, and
n (N) — YOINI——(Z.%*,)
u(N) — 0
nN) -0
hi(N) — Hoo N~*™

at N — » (21)

in the second approximation.

Substituting the expansion (19) into the initial equations (4), and
retaining the principal terms, we obtain a system of equations for the first
approximation, which may be written in the form:

—1
Do = 7—7— poho = const.

o’ +7—1N116=0

4vpo
_r @ l / p Al 1 _ I 12 99
=) @ he + 4Nho = %y ho = — _—— Pollo (22)
go— Y= 1h
7 g Po
3 o Y — 1 N h()

Vo = 1 —.
! 4J0 4y Po
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The boundary conditions for these equations are the conditions (20) as
well as the conditions on the plate surface, which we will write in the form

w(0) =1,  3(0) = hi(0) =0 (23)

i.e., our requirement, in addition to the fulfilment of the boundary condi-
tions (6), (7), is that the plate be capable of displacements in its own plane,
in the first approximation. The first-approximation problem, thus formu-
lated, completely coincides with that discussed in Ref. 2. Its solution is
relatively simple. First, we note that the second of the equations (22) is
integrable in quadratures. Its particular solution that satisfies the boundary
conditions is

g 22 1 il et /Ne—w—l)/(szmwz AN (24)
2mypo Jo

Having this, the third equation can be integrated. However, this is not
required for the determination of the pressure distribution over the
surface of the plate. To solve this problem, it is enough to find the ex-
pression for y(N) at N — . On the basis of the fourth of the equations
(22), we have:

lig @) = s /ho N (25)
N—-w YPo 0

The integral in this expression is easy to calculate with the aid of the third
cquation of the system (22),if the boundary conditions for hy(N) and the
exponential way in which this function tends to zero at N — oo are taken
into account [2]. The result is the following expression:

. 2 T
| N) = — L 26
Lim Yo(N) T —3\ 70 (26)

Making use of the boundary conditions (20), the expression is written in
the form:

_ 2 y—1 c
YOO o 3‘)’ — 2 7|"YP00 (27)

The relation obtained constitutes the missing boundary condition for the
system of equations for the inviscid external flow. The fulfilment of this
condition uniquely determines the constant ¢ in the shock-wave equation
(5) and in the boundary conditions (11), thereby completely closing the
first-approximation problem.



INVISCID HYPERSONIC FLOW 1085

Let us examine the problem of the second approximation. Substituting
the expansions (19) into the system (4) and equating the corresponding
terms of the expansion, we get a system of linear differential equations for
the second-approximation functions.

The second and the last of the equations (4), together with the boundary
conditions (21) yield

—1
pr =" — (ool + hopy) = 0 (28)

Subsequently, on the basis of the first of the equations (4) and the boundary
conditions (21) for u; we find that

Then, the equation for determining the function h,, after simple trans-
formations, taking (28), (29) and the results of the first approximation
into account, takes the form:

Y Doy oy Ly, 1 .
7_1 - h1 +4Nh1+67h1 0 (30)
Its solution should satisfy the last of the boundary conditions (21) as well
as the condition (7) on the heat-insulated surface:

hi(N) — Hqo N~¥
at N — » (31)
hi(0) =0

Finally, the equations for the function y, have the form:

, Y = 1 })1 &
gt ==L, (32)
4l Y Do
Here, the function y;(N) must satisfy the first of the conditions.®

By successive integration of (30) and (32) we find the value of funection
y1(0), that determines the transverse displacement of the plate:

y o~ [(1/'4)+(1/37) ]/](0) ({3)

Note, that in the derivation of the equations of the second approxima-
tion, in the initial equations were neglected the terms, the relation of

* It is readily shown that the asymptotic nature of the behavior of the functions of
the internal expansion at N — = prescribed by the boundary conditions (19), (20), com-
pletely corresponds to that deduced from a direct analysis of the differential equations
for these functions.
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which to the retained terms was of the order of ¢—(/» + (/39 hile in ob-
taining the expansions (19) on the basis of (18), the order of the highest of
the neglected terms was ¢~% Hence, the solution of the problem under
study, in the second approximation holds at a relative error of the order of
(=1 + @B or =12 while the relative error of the first approximation is of
the order of ¢~/ + (/sm),

Summarizing the results obtained, we write the final equations for the
pressure p = p_V?2p at the surface of the plate, and the rate of the trans-
verse displacement of the plate 7. For this purpose, we will examine the
Reynolds number of the problem, defined as

puVeo

Ra,, = P=ml (34)
Mo

where ¢ is dimensional time. As a result we find that

L~y y =1 Py M. ; (35)
P \/ Rem
and that the quantity
b 1 1\ \/‘Y 1M, ](3/2)—(2/37) )
o = (4 + 37> y1(0) [ Vi (36)

Thus, the formula (36) defines the rate of the transverse displacement of
the plate, the surface pressure of which varies according to the law (35).

STEADY-STATE MOTION

The equations of the plane steady motion of a viscous heat-conducting
gas can be written in the following dimensionless form:

u @_g[ (4@_293)]
(“ax+lay>+ax—ax "\39: " 30y
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oY’ (@)] (a_u @)2 2 (a_u 6_)
+2h[(ax>+ ady Lt 6y+6:c _3h 6:c+6y
dpu dpv 7—1ph

a Tay m % PTG

Here, the velocity-vector components refer to the velocity of the unper-
turbed flow V, the pressure refers to the double velocity head p, V2, the
density refers to the density of the unperturbed flow p,, the specific
enthalpy refers to the quantity V2. The independent variables refer to the
characteristic length

L = (38)

where C is the proportionality factor in the relation of the viscosity co-
efficient to the enthalpy, which as before we will consider as the linear
relation (1). Introducing the stream function ¢, defined by the relations

oW o (39)

= —pv
o pY,

we write equation (37) in terms of the independent variables x, ¢, getting a
system of the form:

u , dp _ sz_<i_ i)[é (Qﬂ_ Qz)
Pax T o " Pay ~\ar ~ Mag) 3" \er T oy
2, @ of o (o Y],
—3”h“a¢/]+"“a¢["h“a¢+h<ax "”aw)]
o 9 J0 |4 v 2 ou Ju
P g T afﬂuw[sphw"gh(:a;—"”a;)]
ad 9 u a a
+(a—x—"”*a¢>["h“a‘;z+h(£—ﬂ”5¢>]
oh _ @_1<_6__ i)[h<6_h_ aj)}
Mo " %oz " s\oz "oy o "oy
1o, oh o)’ (1)}
+apua¢(phua¢>[+2h[<ax—pva‘I/) + pua‘#

du _a_vzz(gz u @)2
+h<pu + — pv )—3h 6x_pv6¢/+pu6¢/

b
<
S

(40)
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Our problem consists in obtaining an asymptotic solution of these equa-
tions that corresponds to the steady motion of a gas behind a shock wave
having the form:

y = cx3* (41)

and which satisfies the boundary conditions on a heat-insulated semi-
infinite surface (¢ = 0), the form of which

y = f@) (42)

is to be determined. These conditions have the form:

R
oh F'@) 5

v AT @] 4

u=v=0,

Let us start by examining the asymptotic expansion that holds for the
external part of the flow, in the limits of an approximation in which this
region of the flow may be treated as inviscid. The expansions for this
region are written:

= 14 [yov) + £ y(v) + ... ]
u—1= g2V + £12Vi0) +...]
v ="MVl + £ Vi) + ... ]

<
|

(44)
p = £ [Po() + £ Pi() + ... ]
p = Ro() + £ () + ...
h = g2 [Ho(v) + £ Hi(v) + ... ]
where the independent variables £, v are defined by the relations
r =4
Y= =+ 0+ .. (45)

We make use of the expansion of one of the independent variables to
obtain by the method in Ref. 4, a solution for the external inviscid flow
that is valid over the entire flow field, including the proximity of the plate
surface. This is necessary because, in distinction from the first part of this
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paper, the first terms of the expansion (44) does not represent an exact
solution of the problem for the external inviscid flow but merely its ap-
proximate solution which, for » — 0, exhibits some peculiar features that
the exact solution lacks.

On the basis of (45), we obtain the following formulas for the trans-
formation of the derivatives to the independent variables £, v:

0 _ 9 3,4 0 3 /< ! )g
- EVV+4£ V¢1 3‘1/1 ay+---

oxr ot 4 3

46
9 _ I 9 o ‘l/li _ (55
EY) A Yoy

The boundary conditions for the solution of the external problem are the
conditions on the shock wave (41) which in the limiting case M — o
have the form:

n = c, y = c£it
_ _ 9(;2 _1/2,: g 2 ,—1/2 -1 ]
uml=—ga+nt [T f TOED
g = 3c g [1 . _g_cz £ g 0(5—1)]
2r + 1) 16
= __90_2__ -I/ZI: 9 o, 1 ] (47)
_r+1
y—1

2
_ _9gvc —1/2 9 a2 —1 ]
L TRV [1 ¢ & TOE)

Substituting the extensions (44), (45) into the initial system of equations
(40) and the boundary conditions (47), and retaining the principal terms,
we obtain the systems of differential equations and the boundary condi-
tions of the first approximation, that are fully equivalent to the problem of
the one-dimensional nonsteady motion of an inviscid gas (8), (10), discussed
in the first part of this paper. Hence, changing the designation of the
independent variable ¢ to £, we can make use of the corresponding formulas
without introducing any changes.
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Then, for the longitudinal component of the velocity factor, we get in the
first approximation:

UO+K2°3+7—}—1§—2=0 (48)
from which, for v — 0, it follows that
Uy = Ugo v* 4+ 0(°), (49)
where
T = == %_1_ A" Pot— (50)

After simple transformations using the relations of the first approxima-
tion, the second-approximation equations may be written in the form:

2

U+ Vo Vi + B+ 2 = 0
i@%Y—EQﬁ—§%>m=Ph—wm

3 P R\ P 1
(BB (B aB) - - (- )

Y1+ﬁ<vo+%>=¢i v)

(1)

%vY}—iY1+V1—VoU0= (wi—%%) Yo

|

P, = 7;1 (Ro Hy + Ho R))

In order to eliminate from the second approximation the peculiar entropy
features (at » — 0) of a higher order than in the first approximation,
following the method in Ref. 4, in the fourth of the equations (51) we
may set:

R,

1 _ e ¥ E
Y = Uo + Re (52)

It then takes the form:
Y — 0 (53)

1

Now, these two equations, together with the remaining equations (51),
form a closed system.
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On the basis of (47), the boundary conditions for this system of equa-
tions may be written in the form:

Yale) =0, YVi(e) =0

81¢!

U = 158y + 1)

27¢°
Vile) = — 20+ 1) i)

81¢*
Pie) = =186+ 1)
R1(C) =0

4

B = — 8lvc

128(y + 1)?

By taking y1(c) = 0, we have eliminated in the derivation of these bound-
ary conditions the displacement of the lines of flow in the proximity of
the shock wave.

The equation (51) together with the boundary conditions (54) yields:

Fuly) =0 (55)

The second of the equations (51) can be now integrated. Its solution that
satisfies the boundary conditions (54) has the form:

o

Py R _ 9 e
Po TR, 16

v () (56)

¢

N

Treating the equations (51), (53), (55), (56) simultancously, and taking the
results (12), (14) of the first approximation into account, it is possible to
determine the behavior of the functions of the second approximation,
at v — 0. There approximate expressions for this region have the form:

Y1 = Y r!P 4 O - @)

('1 — ('10 py— (28 — @3v) | ()(V‘ 4/.’&7)

Vi = Vipv™ 3 4 O(v'= 437) (57)

P, = ()(Vl/.'i)

Ri = Ry v=@% + Qi 4 O(y0)

H, = Hyov @3 — @3n ()(V—-a/:w)’
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The coefficients in these formulas are related to the coefficients of the fune-
tions of the first approximation (15) by the relations:

276
‘l/lo = W—‘
v)
U = — gre™” AT Py
16(y — 1) (2 —1v)
3y /7 1-(1/7)
Vie=—7"=FA4 Yo P 58
10 4(y — 1) 0 00 £ 00 (58)
968/3 —1/y 1/y
Bo= =g Fo
8/3
H]() = gve AOI/'V POOI-(I/‘Y)

16(y — 1) (2 — v)

in which the constant A, is determined from formula (13).
In the internal region of the flow, the dimensionless independent variable

of the order of unity is
N = e (59)

In order to determine the form of the solution in this region, let us express
the functions of the internal flow field through the independent variable of
the internal expansion

n = Nge, (60)

and examine their behavior at ¢ — o« and a fixed value of N. To this end,
we first substitute the expansion for the independent variable n (45) into (60),
thereby obtaining the following relation between the independent variables
of the internal and external expansions:

v = A\fgfl/ﬂ . \l,“' ‘\.'l/.'i S—'.’/.'{ + ()(Evl + (1/37)) ((;l)

Now, making use of the expressions (14), (49) and (57) for the functions of
the first and second approximations contained in the expansion (44), we get

3/4 1—(2/3y) —(1/2)4(1/37)
y =t [Y00+Y01N ¢

. <1 o %) \(/l() YO] N(lr’-’l)-(?/liy) E—(2/3)+(l/37) + ()(E—H»(Z/Sy))]
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: 2 B
w =14 Up N7 WD (;7 Y10 Voo

—(2/3)—(2/37) —(2/3)+(1/3 —14(2/
+ V]o) N (2/3)—(2/37) £ (2/3)+(1/3v) + 0 (S 14( /37))
—1/4 —2/3y —(1/2)4(2/3v)
v =¢ [Voo + (NVox + Vlo) N ’S !
(62)

2 2 — (D= (2/37) ,—(2/3)—(1/34
+ {(_1 +§> VoN + = I'm}' V1o N~O=CQM (—C8-0/3n

+ 0 (E—1+(2/37)):|

p=¢"[Po+0E")

p = Rog N¥/¥ g% < - EZ; 4o Roo
+ Rm) N - g (17
h = Hoo N~Y% g-m+asm <:§2; oo oo
+ Hno) i S~ AN RN g, g P D

These expressions predict the form of the asymptotic expansion for the
sought functions in the internal region of the flow, namely:

— 53/4 [!/“(N) _+_ g—(l/‘l) + (1/37)!/1(‘\') _+_ E—mzn + 11"37\!/2(‘\') + o ]

I

w = up(N) + £ WD + W (N) 4 £ + W (V) + ... |
b= EUA [0g(N) 4 £+ A (N) 4 g+ (V) 4] (63)
p = £ [po(N) + £WD + W p(N) 4 gD+ (V) 4
= £V2 [po(N) + /D + ) gy (N)  F@ + Al gy (N) 4|

°
|

>
Il

hO(N) -+ E—(l/?) + (1/3y) hl(‘\r) + E’('”:” + (1/3y) I,._,(‘\') + ...
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Here, the internal and external expansions may be combined, provided
that the following boundary conditions for the functions of the internal
expansion are satisfied:
Yo(N) — Yoo
ug(N) — 1
at N > » (64)
Po(N) — Poo

ho(N) — 0
in the first approximation:

UI(N) — YOI Nl — (2/3y)
1L1(N) — Vo() N—23

at N — » (65)
pi(N) — 0
hl(N) — Hyy N72%
in the second approximation, and
y2(N) — — (1 - 32—) Y10 Yor N-E/E+0/9
2 —(2/3)—(2/3y)
us(N) — <37 Yo Voo + V10> N N )

p2(N) — 0

hy (N) — ({% Yo Hoo + Hm> N @D

in the third approximation.

Substituting the expansion (63) into the initial system of equations (40),
and equating the principal terms, we obtain the system of equations of the
first approximation, which may be written in the form:

vy —1

Po = —— poho = const.
v

&

1 _
’71 1 P()uo(uouol)l + :1 N(]O(/O, + l‘_" ho = 0
(67)
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’ 2/
‘Yzlpo[uo<}:_0+2>]+ N<ho+ >=0

3 1. ,
Po’uoyo' =1, vy = (Zy° . ZNy())

The boundary conditions for these equations are the conditions (64) as
well as the conditions on the rigid surface which, on the basis of (42), (43),
we write in the form:

¥0(0) = uo(0) = h'(0) = 0; (68)

this means, we assume that in the first approximation, the body in the
flow is a plane semi-infinite plate. If the Prandtl number ¢ = 1, the integral
of the heat flux equation, that satisfies the boundary conditions (64) and

(68)y iS |
(69)

)

DO | =

u® _
ho + 5 =

The following will be limited only to this case. The momentum equation
reduces then to the form

1 ly—1
T P + § Nuwad + L —ud) =0, (10)

where, in correspondence with the third of the boundary conditions (64),
Po = Poo (71)

The boundary conditions of (70) are the second of the conditions (64) and
(68).* After determining wuo(N), the function y,(N) is obtained by inte-

* Note, that by introducing the variables

-1 IN 1 [+ —1
n 7 i—— and f, = - YTON
YPo o 2 YPo

equation (70) can be reduced to the known form

%, %o 1 dfo 2]_
Tl T ['“(dn) -0

with the boundary conditions

l d
fo=(£]=0 at g =0, —'ﬁ)-*l at 9 —

dn dn
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grating the fourth of the equations (67), taking (68) and (67) into account.

This yields:
N 2
yo =1 1l/ 1—uﬂ°—dN (72)
0

2y po 0
Finally, the first of the boundary conditions (6) leads to the relation:

y=11 ["1—u’

Yoo =
o 2y Poo . Uo

dN (73)

in which the integrand depends parametrically on P,. Hence, (73) is the
necessary boundary condition for the external first-approximation prob-
lem, by means of which the quantities Yo and Py are now related. This
means that it uniquely defines the constant ¢, i.e., the shape of the shock-
wave surface, and completely closes the system of relations of the first
approximation. The problem of the flow past a semi-infinite plate, thus
stated, has been solved in Ref. 3.

Let us now examine the second and third approximations. First, on the
basis of the second of the equations (40) and the boundary condition (65),
we get

—1
P = x - (poh1 + hop1) = 0 (74)

The third of the equations (40), after certain transformations taking the
relations of the first approximation into account, leads to the integral

h1 + U1 = O (75)

This solution satisfies the boundary conditions (65), since in accordance
with (15) and (50) Ho + Voo = 0. It also satisfies with the required order
of approximation the boundary conditions at the wall, which can be
readily seen by substituting the expansions (63) into (43).

Now, after certain transformations, the first of the momentum equations
(40) leads to the following equation for function u,:

y—11+ uof
4’)’ u02

NS P

1
;Z—l Po(uour)"” + 1 Nu,' — [

DO | =
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Its boundary conditions are the second of the conditions (65) and the con-
dition of attachment (43), i.e.,

u1(0) = 0, u(N) = Voo N=237 at N - (77)
Finally, the function y:(N) satisfies the differential equation

l+7_—_llﬂul=0 (78)

2 2vpo  ul

as a boundary condition for this equation serves the first of the condi-
tions (65).* )

Integration of (78) yields the value of the function y;(0) at the wall that
determines its form in the second approximation. In the same manner is
found the systems of relations of the third approximation: the integrals

vy —1
Y

(poh2 + hopz) =0 (79)

P2 =
hg + Uy = 0 (80)

the differential equation for the function w.(N):

Y ” l /_['Y—ll'i'ug
L (uo u2)" + 4Nu2 o
2 1
+<—r+.—>:|uz=0 (81)
3 3y

with the boundary conditions
ug(O) = 0, uz(N) - (;2'—)' ¢1oVoo + ]710) N_(zjs)-(?/awnpu N-o »w (82)

as well as the equation for the function

y-llt+w g
2vpo ul ?

v + (83)

’

the solution of which must satisfy the first of the conditions (66). As a
result may be obtained the value of the function y.(0).

* Note that the character of the asymptotic behavior of all functions of the internal
expansion, as prescribed by the boundary conditions (64) through (66), completely
corresponds to the character of the behavior resulting from an analysis of the differential
equations for these functions.
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Thus, the sought shape of the wall on which takes place a pressure dis-
tribution prescribed in the first-approximation theory to a plane semi-
infinite plate, is

y = y1(0)£(1/4)+(1/3v) + y2(0)£(1/12)+(1/37) (84)

Note, that in correspondence with the previously performed estimates of
the neglected terms, this result contains a relative error on the order of
g1+ @B or gV2 whereas the first-approximation theory involves a
relative error on the order of & (/2 + (1/3v),

Synthesizing the results, we write the final expressions for the pressure
distribution $ over the surface of the body in the flow, and the shape of the
body. To this end, as usual, we consider the Reynolds number of the
problem

Re., = (85)

where 7 is the dimensional distance from the leading edge.
The resulting expression for the pressure at the body is then:
M3

Vv Re.

’E’Y\/’Y—lpoo (86)

A

and for its relative thickness:

\/ 1 M. (3/2)—(2/3y) (11/6)—(2/3v)
= (0 )(—”\/T—— + 12(0) Y—”\/—ﬁ_i 87)
(2 €

=<

The formula (87) defines the asymptotic shape of the contour of the body
on which takes place the pressure distribution (84).

The results of numerical calculations performed for the case y = 1.4,
give the following values for the sought constants:

1:(0) = 0.7460,  y,(0) = 2.2752.

CONCLUSION

The performed investigation demonstrates that by treating the problem
of the hypersonic flow of a gas at M _ — oo past a slender body as a problem
of the strong interaction of the boundary layer at the surface of the body
with the inviscid region of the flow field, it is possible to obtain a solution



INVISCID HYPERSONIC FLOW 1099

of this problem at a higher order of approximation than by the techniques
previously used. Further improvement of the accuracy of the obtained
results (determination of the higher-order terms of asymptotic expansions)
will lead to the necessity of accounting for the viscosity in the external
portion of the flow field, and to additional terms in the equations (that are
neglected in boundary layer theory) for the internal region. As has been
shown in the works [1,5], however, such a treatment, strictly speaking, is
inadmissible because the terms that have to be considered in the Navier-
Stokes equations are of the same order as the Barnett terms which these
equations do not take into account.
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