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ABSTRACT

The paper discusses the higher-order approximations in the theory of strong
interaction between a boundary layer and an external inviscid flow. Known
results concerning the problem of the unsteady motion of a gas past an
infinite plate, and the problem of the steady flow past a semi-infinite plate
are refined. The analysis leads to asymptotk expressions for the transverse
displacements of a plate, or its shape, that correspond to the pressure-
distribution law of the first approximation.

INTRODUCTION

The effect of the viscosity and heat conduct ivity of a gas upon the flow
field near a body moving at hypersonic speed is known to lend itself to an
approximate analysis on t he basis of t he theory of boundary-layer inter-
action with the external viscous region of the flow» If the body is suffi-
ciently slender, and the Mach number and Reynolds number of the
problem are such that the ratio M.301-\/Reo » I, then a strong interaction
takes place, in which the pressure field in the perturbed region of the flow
is primarily influenced by 1 he displacing effect of the boundary lap‘r, and
to a much lesser degree by the shape of the surface of the body t hat is
situated in the flow. The most typical examples of a plane flow of t his type,
namely, the unsteady flow past an infinite plane 1 hat has been abruptly
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set in motion at constant speed, and the steady flow past a semi-infinite
plate, have been discussed in Rofs. 2 and 3.

The solutions obtained in these papers are based on combining the exact
(self-similar) solutions of the boundary-layer equations with the solutions
of the equations in the small-perturbation theory of hypersonic flow; the
procedure of combining these solutions having been developed only in the
first approximation. The result of this is the peculiar behavior of the
solutions in the intermediate region (at the external boundary of the
boundary layer), which manifests itself in that the enthalpy of the gas in
this region tends to zero, while the density undergoes an infinite increase.

References 2 and 3 include also accuracy estimates of the first-approxi-
mation theory.

The object of the present work is to develop the higher-order approxi-
mations to these problems, or more precisely, to problems associated with
the asymptotic behavior of the flow field of a viscous heat-conducting gas
behind shock waves the propagation of which is controlled by the same
law (y t4 and y .6, in the limiting case where 31

NONSTEADY MOTION

Let us examine the one-dimensional nonsteady motimt of a viscous
luut-condurting gas, caused by an infinite plate that has been set in
'notion at a velocity that has a constant longitudinal component l. We
assinne a linear dependence of the viscosity coefficient of t he gas upon the
specific enthalpy:

= CL 2,h (1)

In this case, t he Xavier-Stokes equations may be writ ten in t lie form
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where the velocity-vector components u,  e refer to the longitudinal velocity
of the plate, the pressure p refers to the quantity p TÇ,, the density p refers
to the density of the unperturbed flow p„ the specific enthalpy h refers to
the quantity V.2; the dimensionless independent variables t, y refer to the
quantities c/p and cV,o/p, respectively; a and -y are respectively the
Prandtl number and the ratio of specific heats of the gas.

Introducing, on the basis of the continuity equation, the function 1,t,
defined by the relations

— p,
alp
ay (3)

	

we write the system (2) in terms of the independent variables t, As a
result we get

au a (, au)
at — pu

at
av,  3 a,,t ph  4
ap  _ 4 a ( av

(4)

ah ap 1 a (ah) 2  (Cly 4 2L ( ay )2
ph p n 


—at at ' 6

ay ay
p 1, P — 	 ph.atp

As already stated, our object is to obtain an asympt ot lc solut ion of t hese
equations that corresponds to the one-dimensional mot ion of a gas propa-
gating according to the law

y =  et  (.5)

that satisfies the condition of attachment

u = 1

and the condition of the absence of a heat flux

ah
= O (7)

at — pv,

on the plate surface ,k = 0, which is thus post ulated as a heat insulat ed
surface.
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For the external portion of the flow field, adjoining to t he surface of the
shock wave, such a solution is known to have the form

y = t Yo(v)

U = 0

V = l-114 Vo(v)
(8)

p = t-1" Po(v)

p = Ro (P)

h = F" Hoop),

where the independent variable

	

v = 0-3/4 (9)

Substituting the expression (8) into the initial system of equations (4), and
retaining the principal terms in these equations, we obtain a system of
ordinary differential equations for the well-known progressive motion of
an inviscid gas:

1
+

4- Vo =

Ro G3 3

v

-I-Hi' + Ho) =
2- vPô  Po


Ro = 1 (10)

3
4
- v174 —

4-3
Yo Vo = 0

Po — 	 RoHo

We should note that taking a gas in the external region of 1 he flow to be
inviscid and nonconducting involves a relative error on I he order of ti,

since this is the order of smallness of the relation of the t ernis neglected in
equations (4) to the principal terms.

The solution of the system of equations (10) must satisfy the set of
boundary conditions at the surface of the shock wave, t he propagation of
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which follows the equation (5). In the limiting case of a flow at .1/. ,

these boundary conditions take the form:

17, (c) = C

Vo(c ) -
3c 


2(7 + 1)

9c= 

Po (c) -

(87 + 1)

+ 1 

Re(e) —

- 1

97c2 

Ho (c) -

8(7 + 1)2

where the constant  c  has to be determined.
For the following, it will be essential to have the expressions for the

sought functions of the external flow at  V  O. To obtain these equations
it is necessary to note that the second of the equations (9) is integrable
with the aid of the last equation, giving:

PO
= iou

R  (-1;




where the constant of integration A ,, is det ermined from 1he boundary
conditions (11) :

9c 

A 0 -

" -	 1)'

8(7 -I- 1) 7 I

Making use of Eq. (12) and the remaining equal ions of the syst em (10), it is
now easy to obtain the following expressions, valid for 1, -4 0:

yo yoo yo I— (2,'37 ) _F ())

170 = 1700 + 17o, p'— `2"3-') + 0 (V2—(21371

Po = Poo + 0 (u) (14)

Ro = Roo P2/37 + (p'+`2 3)))

H0 = H 00 u-2/37 + O (,'-(2/37))
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The coefficients ill these formulas are related by the following relations:

37   A  D 3 ,
Yo1 — --to" /- oo-", Yoo = oo

3-y — 2 4

Yo1 — 2(373— 2) Ao" p
00--"7

,

1100 - 	
1

A01  'Too 1—(`
—

R„ = A0-11Y Poo" (15)

To investigate the internal region of the flow field we, as usual, introduce
the independent variable

N = 0-1" (16)

To determine the form of the asymptotic expansion in this region, we ex-
press the external flow function through the independent variable of the
external expansion

v = Nri" (17)

and consider the linnt t co at fixed values of N. Using the expressions
(14), we get :

Y = 	 14 [70 0 -I- YO1N1—(213'1) t—(1/2)+(1/37)
+ 0 (j -14 (1/37) )1

u = 0(1-1 )

V = 1-1/4 [1/00 + Y01 N1—(213.7) 1—(1/2)+(1/37) 0 w-1+ (h1.3-y)]

(18)
p _ j-1/2 [poi) + 0  (1-1/2)]

p =  Roo N2/3  1—"y  ± 0  (1—
(1/2)—(1/33)

h = 1100 N- 213y t—(1/2)-1-(1/37) + (1-1-1-(1/37))

These expressions predict the form in which to seek the asymptotic solu-
tion for the internal region of the flow, namely:

= t3/ 4 [110 (N) +
1—(1 /2)+0 /37)  y,

(N)

u = Uo  (N) t—(112)+"137) ul(N) . . .
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V = t—"4 [vo (N) 1—(72)"1v(N). . .]
(19)

p _ i-1
1
2 [Pi  (N) r o,21+(1 '37)  pi(N) 4 _ .1




p t-112 [po (N) t—(1,2),() 37) pi(N)




h = ho (N) 1—(1127) h1(N)

Indeed, the combination of I he internal and external expansions can be
now performed if, in conformity with the simplest. form of the combinat ion
principle, the following boundary conditions for t he external expansion
functions are satisfied:

go(N)You

u0(N) —› 0

N (N )Poo

in the first approximation, and

y (N) YoINI-(2

ul(N)0

131(N) 0

hl(N) —> 1100N-2'3'

in the second approximation.
Substitutingthe expansion(19)

at Nx

at  N ---*

intotheinitialequations




(-1),:mil
retaining t he principal 1 erms, we obtain a system of equal ions for 1 he first
approximation, which may be writ ten in t lie form:

— 


Po — podo = const.

Id/ — I A 11(i =
4.-ypo

+ I Nh,Ç —
—

1- 11,, — —  (22)pou'02 


— ho
yo =

'T Po

3 y — 1
l '`) 4  J°  47 po •



1084 FOURTH CONGRESS —AERONAUTICAL SCIENCES

The boundary conditions for these equations are the conditions (20) as
well as the conditions on the plate surface, which we will write in the form

no(0) = 1, yo(0) = k;(0) = 0 (23)

i.e., our requirement, in addition to the fulfilment of the boundary condi-
tions (6), (7), is that 1he plate be capable of displacements in its own plane,
in the first approximation. The first-approximation problem, thus formu-
lated, completely coincides with that discussed in Ref. 2. Its solution is
relatively simple. First, we note that the second of the equations (22) is
integrable in quadrat ures. Its particular solution that satisfies the boundary
conditions is

\I-7--1 f N 2
dN

27rypo o
e-(7-1)/(87PON

up = 1

Having this, the third equation can be integrated. However, this is not
required for the determination of the pressure distribution over the
surface of t he plate. To solve this problem, it is enough to find the ex-
pression for yo(N) at N ;f.; . On the basis of the fourth of the equations
(22), we have:

— 1 f'ho  dNlirn yo(N) — 7Po 
 (25)

The integral in this expression is easy to calculate with the aid of the third
equation of the system (22), if 1he boundary conditions for hu(N) and the
exponential way in which this function tends to zero at N are taken
into account [2]. The result is the following expression:

9 — lim yo(N) = 1
(26) 37- 111 2 \l rypo

\

Making use of the boundary conditions (20), the expression is written in
the form:

2'y .\1 — 1 

Yon = (27)— 2 r7Poo

The relation obtained constitutes the missing boundary condit ion for the
system of equations for the inviscid external flow. l'he fulfilment of 1his
condition uniquely determines the constant c in the shock-wave equation
(5) and ill the boundary conditions (11), thereby completely closing the

first-approximation problem.

(24)
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Let us examine the problem of the second approximation. Substituting
the expansions (19) into the system (4) and equating the corresponding
terms of the expansion, we get a system of linear differential equations for
the second-approximation functions.

The second and the last of the equations (4), together with the boundary
conditions (21) yield

7 -- 1
PI == (Pohl_ hopi) = 0 (28)

Subsequently, on the basis of the first of t he equations (4) and the boundary
conditions (21) for u1 we find that

UI = 0 (29)

Then, the equation for determining t he function h1, after simple trans-
formations, taking (28), (29) and the results of the first approximation
into account, takes the form:

7 	 Po , 1  1
—  0 (30)

— 1 a 4 67

Its solution should satisfy the last of t he boundary conditions (21) as well
as the condition (7) on the heat-insulated surface:

h1(N)  Hoo
at  N Cf. (3 1 )

hf(0) = 0

Finally, the equations for the function  y,  have the form:

7 — I h,
(32)

Here, the function  yi(N)  must satisfy the first of t he con (l itions.*
By successive integration of (30) and (.32) we find t he value of function

yi(0), that determines t he t ransverse displacement of t he plate:

Y t YIV.1)) (33)

Note, t hat in the derivation of t he equations of t he second approxima-
tion, in the initial equations were neglected the terms, the wlation of

*It is readily shown that the asymptotic nature of the hehavior of the functions of
the internal expansion:it N prescribed by the boundary con(litions ( 19), 120), com-
pletely corresponds to that deduced from a direct analysis of the differential equations
for these functions.
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which to the retained terms was of the order of to/2) (1/37), while in ob-
taining the expansions (19) on the basis of (18), the order of the highest of
the neglected terms was ri12. Hence, the solution of the problem under
study, in the second approximation holds at a relative error of the order of
t-' (2/37) or t- 112, while the relative error of the first approximation is of
the order of t-(1/2) + (1/37).

Summarizing the results obtained, we write the final equations for the
pressure 15= pcYlpat the surface of the plate, and the rate of the trans-
verse displacement of the plate Ty. For this purpose, we will examine the
Reynolds number of the problem, defined as

p0,17 t

where t is dimensional time. As a result we find that

 
N/ Rec.'

and that the quantity

V- (4 YI (0) [
310,10/2)-(2/3,),

Thus, the formula (36) defines the rate of the transverse displacement of
the plate, the surface pressure of which varies according to the law (35).

STEADY-STATE MOTION

The equations of the plane steady motion of a viscous heat-conducting
gas can be written in the following dimensionless form:

	

au , au) , ap a [, (4 au 2av )1

	

p(u— v— =

	

axay ax ax d 3 ax 3 ay

[ (au + ay»
h --ay ay ax

	

) ap a [ (4 ay 2p au)]( l ayu . - = — h - — —ax ay ay 3 ay 3 a;

+ a  ax[h (au
ay ax

 p(u

ah , ah) ap , ap , a (, ah) , a (, ah)-- v— = u— -t- v— --t-- - — — —aX ay ax ay 0- ax ax a ay ay

(34)
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aX aY aX 3 ax ay)

apu apt) - 1

	

= 0 p — ph
ax ay ' 'Y

Here, the velocity-vector components refer to the velocity of the unper-
turbed flow V., the pressure refers to the double velocity head  pV2,  the
density refers to the density of the unperturbed flow p., the specific
enthalpy refers to the quantity V. The independent variables refer to the
characteristic length

L =
CV

(38)

where  C  is the proportionality factor in the relation of the viscosity co-




efficient to the enthalpy, which as before we will consider as the linear

relation (1). Introducing the stream function V., defined by the relations

ai
— — pu,ax

a4, _ay — pu 


we write equation (37) in terms of the independent variables x, getting a
system of the form:

	

pu aU p p ( a a) [4 b
pv

(au au)
—

	

ax aX P ay, ax pu (34, 3 '` ax

	

2 avl [ au (ay av— phu pu phu h —ax - pv

a [4 av 2 (au au
pu pu —ap= pu - phu - - h - IA))1ax aik :3 3 ax

- pv -12-)[phu 9-2" h - pv -a2Y
dx ax

	

ah ap 1 (a a [ ah ah)1ax ax 0- az ax

2

	

1 a ( ah au avy]
+ -0. pu -a,7-, phu 0 2hR—au - pv -a— + (puax

3 ax — 1, 2 + pu at)
+ h pu P7.--t + -i2)-- - pv Z( a,,t ax
2 — 2 h au

aq,

	

ay , ay 7 - 1pit — = 1 , U — = r , p = ph
ax 7
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Our problem consists in obtaining an asymptotic solution of these equa-
tions that corresponds to the steady motion of a gas behind a shock wave
having the form:

	

y = cx3/4 (41)

and which satis fies the boundary conditions on a heat-insulated semi-
infinite surface (1/. = 0), the form of which

	

= f(x) (42)

is to be determined. These conditions have the form:

u = v = 0,
f'(x)ah ax 


p[lf"(x)]
(43)

Let us start by examining the asymptotic expansion that holds for the
external part of the flow, in the limits of an approximation in which this
region of the flow may be treated as inviscid. The expansions for this
region are written:

	

= E3'4 [y0(v) t" /MO + • •

	

U — 1 = E-"2 [VO(v) E-112171(p) + • • •

	

- E-1/4 [ Vo(v) E-1/2 VIM
(44)

p = 1/10(v)  E-1/ 2 I', (v)

P = R o(P) / 2 R 1(0

h _ r/2  [Ho(v)  -1/2 HIM 1

where the independent variables E, P are defined by the relations

x =

_  E314n E314 + E-1/2 4,1(v) 1 (45)

We make use of the expansion of one of the independent variables to
obtain by the met hod in Ref. 4, a solution for the ext ernal inviseid flow
that is valid over the entire flow field, including the proximity of t he plate
surface. This is necessary because, in distinction from the first, part, of this
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paper, the first terms of the expansion (44) does not represent an exact
solution of the problem for the external inviscid flow but, merely its ap-
proximate solution which, for 0, exhibits some peculiar features that
the exact solution lacks.

On the basis of (45), we obtain the following formulas for the trans-
formation of the derivatives to the independent variables E,p:

a a 3 _1 a 3 1 1 a
= YE— 4 P  -a; +

3
1
2

Pth — :1
)

+ • • •

a t-3/4 a t-5/4 ,b1 a
a4, =av aV

(46)

The boundary conditions for the solution of the external problem are the
conditions on the shock wave (41) which in the limiting case ilico oo
have the form:

n c, y = cE"14

— 1 — —

9C21/2 [

1 — c2 -1/2 O(E-1)]
8(7 + 1) 16

V
3c 	 -1/4

2 (7 + 1)
9 2 -1/2
16

c 0(E-1 )1

—9c2

8(7 + 1)

92 -1/2c+ 0(C)]

16

(47)

-
7 -

2
h = "c c" [1 — -9—C2E-1/2 WC)]

8(7 + 1)2 16

Substituting the extensions (44), (45) into the initial system of equations
(40) and the boundary conditions (47), and retaining the principal terms,
we obtain the systems of differential equations and the boundary condi-
tions of the first approximation, that, are fully equivalent to t he problem of
the one-dimensional nonsteady motion of an inviscid gas (8), (10), discussed
in the first part of this paper. Hence, changing the designation of t he
independent variable t to E, we can make use of the corresponding formulas
without introducing any changes.
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Then, for the longitudinal component of the velocity factor, we get in the
first approximation:

V02 -y  Po
Uo + - 0

2 7 - 1 Ro

from which, for v -> 0, it follows that

LJ = uoo v-2/31 ± 0(v°)1

where

U00 - -
7 1 1110"7

Poo1-(117)

After simple transformations using the relations of the first approxima-
tion, the second-approximation equations may be written in the form:

Vô
Ui

,
Vo V1 + H1 —2 = 0

(vvoi — ( 4,1
4 4 3

3 v2 (PI R1)1 v (P1 _ R1) = (41 )
2 Po Roi Po Ro 3




± (uo + = tki

	

0171 - + - Vo Uo = (vtki - tki) 1710

	

P -  7 - (Ro H1 + Ho R1)7

In order to eliminate from the second approximation the peculiar entropy
features (at II 0) of a higher order than in the first approximation,
following the method in Ref. 4, in the fourth of the equations (51) we
niay set :

It then takes t he form:

 

Yi = 0(53)







Now, these two equations, together with the remaining equations (51),
form a closed system.



INVISCID HYPERSONIC FLOW 1091

On the basis of (47), the boundary conditions for this syst em of equa-
tions may be written in the form:

0, (e) = 0

81e1 

U1(6 — 198(y + 1)

(54)

81e4 


(e) 198 (11 +


(e) = 0

817e1 

111(c)  = — 198(y + 02

By taking 1,G1(c) = 0, we have eliminat ed in 1he derivation of t hose bound-
ary conditions the displacement of the lines of flow in the proximity of
the shock wave.

The equation (51) toget her with 1he boundary conditions (54) yields:

0 (55)

The second of the equations (51) call he now in t egrat ed. Its solut ion that
satisfies the boundary conditions (54) has t he form :

— Bo =1-6v
4j1(v)

9 3-2.39 - I
(56 )

Treating the equations (51), (53), (55), (5(i) simultaneously, and t aking t he
results (12), (14) of t he first approximat ion into account, it is possible to
determine the behavior of 1he functions of I he second approximation,
at v —> 0. There approximate expressions for t his region have t he forin:

= v" + (2011

( -
/3, (2/3y, ± ()(- 413-y)- 1 


= 110 1,-2/3'y + 0(1,1- 1/37)

=

Ii  = Rio v--(2/  (2/37' + 0(u")

HI = 1110 V-(2°) - 12/"7) H(V-4137),

(57)
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The coefficients in these formulas are related to the coefficients of the func-
tions of the first approximation (15) by the relations:

27c813 


16(2 — 7)

16(7 — 1) (2 — 7)
A0"7 pool-"/7)

gyc8/3

4(73-7 1)
Ao '7y00

p
00

1-") (58)

9c8/3 

RIO

16(2 —
Ao-' 7I7 P0011

gyc8/3
16(7 — 1) (2 —

7) Ao Pool-(117)Hio

in which the constant Ao is determined from formula (13).
In the internal region of the flow, the dimensionless independent variable

of the order of unity is

N =  (59)

In order to determine the form of the solution in this region, let us 'express
the funct.ions of the internal flow field through the independent variable of
the internal expansion

n = (60)

and examine their behavior at, E cc and a fixed value of N. To this end,
we first subst it ut e the expansion for 1he independent variable n (45) into (60),
thereby obtaining the following relation between the independent variables
of the internal and external expansions:

v = NE-1/2 — NI/3 E-213 + 0Q-1 + (I/31)) (61)

Now, making use of the expressions (14), (49) and (57) for t he functions of
the first and second approximations contained in the expansion (44), we get

y 3/4 [=  Y00 ± yoi ATI-(2137) -(112)+(1/37)

2_ (1 _ 4/. yol N(1/3)-(2/37) -(2/3)+(1/3-y) + 0(
37

11/10 —

U10 —

V10
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2 37/ t)-(1 217-12, 27-,7 )//1_
u  = 1 + U00 N—

)

	

+ I- 10 x:, , —2 374- 0,370
,-,

+ 0 (,),:---1-77-12 2)1)

t  v = ç " [ )1700 + (N)[01 + I-1,,)
A/ -2 2, c71, 2 13-12 :3))

2 )-{
9

+ __ 1 + -- -voIN +
;j7

7.- l.,, .1 .,AT-12, 31 -i2 3-0 ,,...)- 12

	

37 ' f Y

	

+ 13 72 3)))1

p {/)00 + 0 (c1

.)
p = RooN2 37

(h2)

I 61 3) +(1 2)

h = 1100 N-2 /3"  ,)_-(1/2 ) -1-)1:2-,7 , ;2  IL))

2 + 0 ( I   ,2

'lliese expressions predict the form of 1he 1isymp1 0111' exp 1Ln:-:im1 fm• thp

sought functions in the interluil regi(01  )i 111,' flow, tizonely:

yE3/4y,(.V )

-,/,)()V )1

11.1,(A.)

-1/2 (p),(X )

-1/2 Ipia)

2

1 2.-7

-13-)

712,

11/2/

713-,y1( )\.

y.V )4

r1LV

7712)y1()V

71'2),f7))/)V)

).

cç,

"

0

*

1,-,

1)

'


11

•

.\*

' H

2-,

,-4-

.

1,iV i

0.4)\')

•

.

f

• I

(;:

- h 0( X ) 71'21 • LI 3'), /ii()V) 72 27 tl 7)-, 1, ,(X)
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Here, the internal and external expansions may be combined, provided

that the following boundary conditions for the functions of the internal

expansion are satisfied:

yo(N) You

uu(N)

N (N ) -> Poo

ho(N) -> 0

in the first approximation:

at N((1-4)

yi(N)  y01 - (2/ 37)

Ui(N) --> Voo 1\T-2/37

at  N (05)
paN) 0

h1(N) 00 N-"""

in the second approxiination, and

0

	

112(N) - (1 -1Pio 1701 N-(2/3')+("")

2

	

no(N) (- ,ho roo N—(2/3)—(213-y)

at  N z ((16)

p2(N) -* 0

9

	

112 (N) 1,1,10 11 00 + N-(213)-(2137)

in the third approximation.

Subsl it tiling Ihe expansion ((13) into the initial system of equations (-40),
and equaling I he principal terms, we obtain the system of equations of the

first approximation, which 'nay be written in the form:

— 1 ,
- - pono =  eons( .

	

— 1
pouo(youo' )' +  NUO(/([ -Y

2,y 1
=

(07)
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+ el 1+ N (ho 	 = 0

po uo yo' = 1, vo = uo ( yo — Nyo')

The boundary conditions for these equations are the conditions (64) as
well as the conditions on the rigid surface which, on the basis of (42), (43),
we write in the form:

yo(0) = uo(0) = h0'(0) = 0; (68)

this means, we assume that in the first approximation, the body in the
flow is a plane semi-infinite plate. If the Prandtl number a = 1, the integral
of the heat flux equation, that satisfies the boundary conditions (64) and
(68), is

uo2 1
ho — =

2'
(69)

The following will be limited only to this case. The momentum equation
reduces then to the form

1 1  —  72 1pouocuouov +  4 Nuoud ± 4
1 


7 (1 — 2.4 ) = 0, (70)

where, in correspondence with the third of the boundary conditions (64),

Po = Poo (71)

The boundary conditions of (70) are the second of the conditions (64) and

(68).* After determining uo(N), the function yo(N) is obtained by inte-

*Note, that by introducing the variables

1.\/ -y —  1 fN dN 1 — 1
= and Jo = "   AT

2 ypo //0 z ypo

equation (70) ean be reduced to the known form

d3fo d2f0 -y — 1 [ df0)1
— Jo  +

dn 2 7 ;/-27

with the boundary conditions

djo dfo
Jo = — = 0 at = 0, -- 1 at 77-*

dn

2

= 0

00
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grating the fourth of the equations (67), taking (68) and (67) into account.
This yields:

o =
7-11fN1-4 


y dN
po U0

0

Finally, the first of the boundary conditions (6) leads to the relation:

7 -- 1 1  (- 1 -- 242
Y00 — dN

j

27 Poo uo

in which the integrand depends parametrically on P00. Hence, (73) is the

necessary boundary condition for the external first-approximation prob-
lem, by means of which the quantities Yoo and Poo are now related. This
means that it uniquely defines the constant  c,  i.e., the shape of the shock-

wave surface, and completely closes the system of relations of the first
approximation. The problem of the flow past a semi-infinite plate, thus
stated, has been solved in Ref. 3.

Let us now examine the second and third approximations. First, 011 the

basis of the second of the equations (40) and the boundary condition (65),
we get

— 1
Pi =(Pohl +  hopi) =  0

7
(74)

The third of the equations (40), after certain transformations taking the

relations of the first approximation into account, leads to the int egral

 h1

uoui = 0 (75)

This solution satisfies the boundary conditions (65), since in accordance

with (15) and (50) H00 + V00 = 0 . It also satisfies with the required order
of approximation 1 he boundary conditions at the wall, which can be
readily seen by substit Wing the expansions (63) into (43).

Now, aft er certain transformations, the first of t he mon tel um equations

(40) leads to 1 he following equation for function

1

	

7  Po (uoui -F
-4

Nu,' [7 — 11 + U0

7 —1
2

4-y Ito`




1 1
(76)
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Its boundary conditions are the second of the conditions (65) and the con-
dition of attachment (43), i.e.,

	

u2(0) = 0, ui(N) Voo N-2137 at N (77)

Finally, the function yi(N) satisfies the differential equation

, , 7— 1 1 + /to'
yl Ul — 0 (78)

27po

as a boundary condition for this equation serves the first of the condi-
tions (65).*

Integration of (78) yields the value of the function yi(0) at the wall that
determines its form in the second approximation. In the same manner is
found the systems of relations of the t hird approximation: the integrals

7 — 1 

P2 — (p0h2 h0/32) =

7

	

h2 14042 = 0 (80)

the differential equation for the function u2(N) :

7 1 1Po (Uo u2)" + [

	

1 Nu ' 7 — 1 1 + 

4  2 47 Ug

with the boundary conditions

u2(0) = 07 U2(N)—) 4,10170 + ) N-(2/31-(21370 10 )np„37 N (82)

as well as the equation for the function

2— 1 1 + Ro

Y2' +

27po U
U2 = 0, (83)

the solution of which must satisfy the first of the conditions (66). As a
result may be obtained the value of the function y2(0).

Note that the character of the asymptotic behavior of all functions of the internal
expansion, as prescribed by the boundary conditions (64) through (66), completely
corresponds to the character of the behavior resulting from an analysis of the differential
equations for these functions.

(79)
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Thus, the sought shape of the wall on which takes place a pressure dis-
tribution prescribed in the first-approximation theory t,o a plane semi-
infinite plate, is

y (0)e1/4)+ (l /37) y2(0)E (l
/12)+

(i
/37)

(84)

Note, that, in correspondence with the previously performed estimates of

the neglected terms, this result contains a relative error on the order of
(2/ 3.v) or E-I/2, whereas the first-approximation theory involves a

relative error on the order of t(112) + (1/37).
Synthesizing the results, we write the final expressions for the pressure

distribution over the surface of the body in the flow, and the shape of the
body. To this end, as usual, we consider the Reynolds number of the

problent

Re. _

where :r is the dimensional distance from the leading edge.
The resulting expression for the pressure at the body is then:

N/ 7 — 1 P  




00 N/ Reo,

and for its relative thickness:




m(0)
1 31 0, (3/ 2)-(2/37)

Ec.
± /MO) (\/ —

Moor/6)—(2/3y)

	

Re„,
(87)

The formula (87) defines the asymptotic shape of the contour of the body
on which) takes place the pressure dist ribution (84).

The results of numerical calculations performed for the case y = 1.4,
give the following values for the sought constants:

y,(0) = 0.7460, y2(0) = 2.2752.

CONCLUSION

The performed investigation demons( rates t hat by treat ing t he problem
of the hypersollic flow of a gas at 11/ —+ix. past a slender body as a problem
of t he st Fong int eract ion of the boundary layer at the surface of the body

wit h 1 he inviscid region of the flow field, it is possible to obtain a solution
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of this problem at a higher order of approximation than by the techniques
previously used. Further improvement of the accuracy of the obtained
results (determination of the higher-order t erms of asymptotic expansions)
will lead to the necessity of accounting for the viscosity in the ext ernal
portion of the flow field, and to additional 1 ems in the equations (that are
neglected in boundary layer theory) for t he internal region. As has been
shown in the works [1,5], however, such a treatment , st rict ly speaking, is
inadmissible because the t erms I hat have to be considered in the Navier-
Stokes equations are of the same order as 1 he Barnet t t erms which t hese
equations do not take int o account.
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